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ABSTRACT 

 Chimeric antigen receptor (CAR) T-cell therapy is an emerging cancer treatment option 

throughout the world. This approach to cancer treatment uses a patient’s own immune cells 

and engineers them to directly target and kill cancer that has been evading their immune 

system. There has been much success when using CAR T-cell therapy in hematological 

malignancies due to the almost universal expression of the CD19 antigen. Though this success 

has not translated into success with solid tumors, there has been extensive research to improve 

the results. Solid tumors pose as a more difficult target due to their variable expression of 

target antigens, difficulty to penetrate, and hostile microenvironment. These challenges have 

been investigated and tested to improve CAR T-cell therapy success in the future. 
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INTRODUCTION 

Cancer, second only to heart attack, is a leading cause of death throughout the world. 

Although modern technology has improved therapies such as surgery, radiation, and 

chemotherapy, the general cancer survival rate has not risen significantly. Immunotherapy is 

one area of cancer treatment research that has shown promising results. Adoptive T-cell 

therapy (ACT) is one approach where a patient’s own lymphocytes are removed and engineered 

to recognize tumor antigens through T-cell receptors (TCRs) or chimeric antigen receptors 

(CARs). CAR-T cell therapy has proved successful and has multiple benefits over other 

treatments such as the aforementioned TCR-modified T-cells. These benefits include 

recognizing antigens independently of the major histocompatibility complex (MHC), ability to 

target proteins, carbohydrates, and glycolipids expressed by tumor cells, and the ability to 

modify the CARs with co-stimulatory molecules to augment cytotoxicity and prolong lifespan in 

vivo (Muhammad, Niaz, et al., 2017). 

 

CAR T-CELL ANATOMY 

The basic anatomy of a CAR includes three sections: an extracellular domain, 

transmembrane domain, and an intracellular signaling domain. The extracellular domain is an 

antigen-binding domain composed of a single-chain variable fragment (scFv) of a tumor 

antigen-reactive antibody. This scFv, consisting of the variable portions of heavy and light 

chains from the antibody, are joined to each other by a peptide linker and fused to the 

transmembrane domain by a hinge domain (Nair, Ranjit, and Sattva S Neelapu, 2018). The 

transmembrane domain is comprised of a hydrophobic alpha helix traversing the cellular 
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membrane to be linked to the intracellular signaling domain within the cytosol of the cell. This 

intracellular signaling domain is the functional end of the CAR. In the first generation of CARs, 

the intracellular signaling domain was a single CD3 chain. Based off the amount of signaling 

molecules on the intracellular signaling domain, there are currently four generations of CARs 

(Zhang, Cheng, et al., 2017). 

The first generation of CARs contained the single CD3 chain for the intracellular 

signaling domain. This assembly did not perform well in vivo due to the inability to produce 

sufficient interleukin-2 (IL-2) and did not yield results in studies due to poor proliferation, short 

lifespan in vivo, and insufficient cytokine products (Zhang, Cheng, et al., 2017). It was concluded 

that CARs with only the CD3 chain could not adequately activate the CAR T-cells (Zhang, 

Cheng, et al., 2017). 

The second generation of CARs were produced by complementing the CD3 chain with 

co-stimulatory molecules such as CD28 or CD137 (4-1BB and CD134 (OX40)). This addition 

enhanced the proliferation, cytotoxicity, and extended the lifespan of the CAR T-cells in vivo. 

The third generation of CARs were produced by fusing multiple signaling domains 

(Figure 1). These two co-stimulatory molecules derived from p56 Ick + CD28, OX40 + CD28, or 4-

1BB+CD28 in addition to the CD3 chain. This assembly showed to increase the potency with 

higher levels of cytokine production (Zhang, Cheng, et al., 2017). 

The fourth generation CAR was produced by combining the second generation CARs 

with a cytokine expression cassette (Figure 1). These are known as T-cell redirected for 

universal cytokine-mediated killing (TRUCKs). These CARs have the ability to increase the 



www.manaraa.com

 Parris 4 

activation of T-cells and attract immune cells to eliminate antigen-negative tumor cells by 

releasing anti-tumor cytokines (Yan Ll, and Liu Bn., 2018). 

 
Figure 1. The evolution of chimeric antigen receptors (CARs). This shows the progression from the first generation 

to the fourth. The CD3 chain is conserved through all generations (Zhang, Cheng, et al., 2017). 

 

CURRENT SUCCESS 

Thus far, Car T-cell therapy has shown great success in treating hematological 

malignancies. This is due to the expression of CD19 by almost all B-cell malignancies such as 

chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia (B-ALL), and Non-

Hodgkin Lymphomas (NHLs) (Muhammad, Niaz, et al., 2017). The first successful treatment of 

CLL by CAR T-cell therapy used CAR T-cells that targeted the B-cell antigen, CD19 (Kalos, 

Michael, et al., 2011). Although CAR T-cell therapy has been very successful in treating 

hematological malignancies, the same success has not been provided in the treatment of solid 

tumors. There may be numerous unknown obstacles accounting for the poor success, but the 
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known challenges of solid tumors are finding, infiltrating, and surviving within the solid tumor 

(Marina Martinez, and Edmund Kyung Moon., 2019). 

 

FINDING ANTIGENS 

The main difference with solid tumors versus hematological malignancies is that solid 

tumors do not universally express a targetable antigen such as the CD19 antigen in 

hematological malignancies. This makes it difficult for CAR T-cells to differentiate between 

normal tissues and tumor cells. The ideal target for solid tumors should be overexpressed on 

tumor cells and show none or very little expression on normal, healthy tissues in the cancer 

patient. Some tumor associated antigens (TAAs) that are being researched are mesothelin 

(MSLN), HER2, EGFR/EGFRvIII, GD2, CEA, IL13R2, MUC1, FAP, PSMA, and PSCA (Li, Jian, et al., 

2018) 

Unlike hematological malignancies, solid tumors do not universally express a TAA that is 

not also expressed on normal tissues. Therefore, a major concern with CAR T-cell therapy for 

solid tumors is off-target cytotoxicity. An example of this is in a CAR T-cell therapy for 

neuroblastoma using a high affinity anti-GD2 CAR. This construct caused lethal central nervous 

system toxicity through excessive CAR T-cell infiltration and proliferation and resulted in lethal 

encephalitis (Richman, Sarah A, et al., 2018). This shows that selecting the correct antigen is 

essential because off-target cytotoxicity on normal tissues may have unfavorable 

consequences. Regulating the binding affinity of CAR T-cells to antigens may be a way to avoid 

toxicity in normal tissues. In a study of tuning the affinity of CAR T-cells to ICAM-1 in thyroid 

tumors, the safety and efficacy was compared between CAR T-cells with a one million-fold 
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difference in binding-affinity. This difference was from low nanomolar to high micromolar 

affinity to the ICAM-1 antigen. The results of this study concluded that the micromolar binding-

affinity performed better in safety and efficacy when compared to the nanomolar. At the high 

micromolar affinity, CAR T-cells produced death of host by on/off-target toxicity as well as high 

levels of cytokine release (Spencer Park, et al., 2017). These results show that a higher binding 

affinity is not always better and may cause unwanted toxicity to the host. Another solution to 

the problem of off-target toxicity is to insert a safety switch that can turn CAR T-cells on or off. 

One such switch is an inducible Capsase 9 (iCasp9) gene that can induce apoptosis of CAR T-cells 

that may cause toxicity to normal tissue. Administration of a small molecule dimerizer drug, 

AP1903, causes mass apoptosis of the activated cells expressing the transgene (Tessa E. gargett, 

and Michael E. brown, 2014). Opposite to the inducible iCasp9 off switch, there is an on switch 

that is capable of introducing the CAR T-cells in a gradual fashion. The design of the on switch 

requires both binding of antigen and a small molecule drug for dimerization and activation in a 

split-receptor approach. This assembly allows for exogenous control over CAR T-cell antitumor 

processes such as proliferation, cytokine production, and cytotoxicity (Wu, Chia-Yung, et al., 

2015). Another inducible on switch for CAR T-cells has been found to be an ultrasound-based 

mechanogenetics system. This system has the ability to noninvasively control the genetics of 

cells with high frequency ultrasound. For this to work, the mechanically sensitive Piezo1 ion 

channel linked to transcriptional activities was engineered into Jurkat T-cells. Application of 

ultrasound to the T-cells induced the expression of CARs. This method allows for precise 

activation of CAR T-cells to protects against off-target toxicity (Pan, Yijia, et al., 2018). 
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INFILTRATION 

Even if a good solid tumor antigen is found, the next obstacle a CAR T-cell encounters is 

infiltrating the solid tumor from the bloodstream. This homing from the bloodstream to tissues 

requires adhesive interactions between the CAR T-cells and the wall of the blood vessel. The 

stages of these interactions can be grouped into rolling, activating-induced arrest, and 

movement into the tissue (Ager, Ann, et al., 2016). The ability of CAR T-cells to home to a solid 

tumor is controlled by their expression of chemokine receptors matching the chemokines 

within the solid tumor. Chemokines expressed by the tumor cells may not match the 

chemokine receptor of the CAR T-cells. This limits recruitment into the solid tumor (Harlin, 

Helena, et al., 2009).  

Chemokines provide a chemotactic gradient for immune cells to follow to produce an 

immune response. There has been a study that used CXCR3 ligands (CXCL9, CXCL10, and 

CXCL11) and transfected mice with them using a recombinant adenovirus-based vaccination. It 

was found that the strongest effect on CD8+ T cells was produced when CXCL11 was 

administered with the vaccine. These results were confirmed with a therapeutic tumor mouse 

model. This showed that delivery of CXCL11 into a tumor may provide increased CAR T cell 

infiltration and toxicity to solid tumors (Namkoong, Hong, et al., 2014).  

There may be a way to evade the barriers of CAR T-cells infiltrating into solid tumors. 

One study of HER2-CAR T-cells against HER2+ metastases of the brain showed that injecting the 

CAR T-cells intratumorally produced complete tumor regression. This study was conducted 

using a xenograft mouse model. When treated with intravenously injected HER2-CAR T-cells at 

10-fold higher doses, the model only showed partial antitumor responses (Priceman, Saul J, et 
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al., 2018). The results of this study show that intratumoral delivery of CAR T-cells against solid 

tumors may be a way to increase efficacy, gain complete tumor regression, and avoid off-target 

toxicities. 

 

SURVIVAL IN THE TUMOR MICROENVIRONMENT 

 If a CAR T-cell is able to cross a solid tumor’s barriers and find itself inside the tumor, 

there are more challenges to overcome. The tumor microenvironment (TME) is significantly 

suppressive to immune cells. The TME is composed of non-neoplastic cells that provide support 

for the neoplasm of the tumor. Within the TME, there are multiple cells and secretory factors 

that suppress the function of CAR T-cell. These include T-regulatory Lymphocytes (Tregs), 

myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor 

associated neutrophils, and stromal fibroblasts. Tregs have the ability to uptake IL-2 to blunt 

the effect of CAR T-cells that are present. Both Tregs and TAMs secrete IL-10, a suppressive 

cytokine that aids in the proliferation of tumor cells (Gowrishankar, Kavitha, et al., 2018). 

MDSCs are able to suppress anti-tumor functions by stimulating Tregs to produce reactive 

oxygen species to suppress the response of T-cells by oxidative stress. In the inflammatory 

environment of a solid tumor, it upregulates the expression of the programmed cell death 

ligand ½ (PD-L1/2). This pathway is used by the tumor to induce exhaustion of CAR T-cells. This 

exhaustion results in decreased proliferation and production of cytokines like IL-2, TNF-, and 

IFN-. When a T-cell is exhausted, it expresses elevated levels of receptors that can bind PD-L1, 

which results in suppression of their anti-tumor activities to allow survival of the tumor 

Morgan, Michael A., and Schambach, Axel., 2018). 
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The stromal compartment of the solid tumor provides protection and serves as a 

physical barrier to inhibit infiltration by CAR T-cells. This compartment is comprised of non-

malignant fibroblasts and mesenchymal cells surrounded by blood vessels, immune cells, 

matrix, and inflammatory mediators. The fibroblasts have the ability to convert to cancer-

associated fibroblasts (CAFs) and express fibroblast activating protein (FAP). The expression of 

FAP by CAFs can bring in endothelial cells for increased vasculature, cause collagen crosslinking, 

and matrix degradation. These, together, promote the development of the tumor. The collagen 

crosslinking introduces complexity to the outside of the tumor and makes it more difficult for 

CAR T-cells to infiltrate (Gowrishankar, Kavitha, et al., 2018). There has been a study conducted 

on the results of targeting FAP by FAP-targeted CAR T-cells. The results showed that FAP+ 

cancer-associated stromal cells are necessary for the progression of a solid tumor. Using the 

FAP-CAR T-cells decreased vasculature and inhibited growth of tumors (Lo, Albert, et al., 2015). 

These results are promising for the future therapeutic advantages of controlling tumor growth 

in an immune-dependent and -independent fashion. 

Solid tumors have another blockade for infiltrating CAR T-cells. The low oxygen (hypoxic) 

environment within the TME is due to abated blood flow, abnormal vascularization, and the 

production of hydrogen peroxide. Reactive oxygen species (ROS), such as hydrogen peroxide, 

impair the anti-tumor activities and put stress on CAR T-cells. One way to combat oxidative 

stress from ROS is to use CARs that are able to express the enzyme Catalase (Gowrishankar, 

Kavitha, et al., 2018). Catalase metabolizes hydrogen peroxide into water and oxygen. A way to 

protect CAR T-cells from oxidative stress within the TME was conducted by engineering T-cells 

with a bicistronic vector to express catalase with the CAR co-expressing catalase (CAR-CAT). 
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These CAR-CAR T-cells proved to reduce the amount of oxidative stress and even exhibited a 

bystander effect. This bystander effect protected NK cells from oxidative stress and allowed 

them to exert anti-tumor functions (Ligtenberg, Maarten A, et al., 2016). 

 

FUTURE DIRECTIONS 

CAR T-cell therapy for solid tumors has shown promising results over the last few years. But 

there is still much room for improvement in the areas of efficacy and safety. The gene-editing 

power of CRISPR/Cas9 could be the future for allowing CAR T-cells to find, enter, and survive 

within solid tumors. One application for CRISPR/Cas9 is the production of off-the-shelf CAR T-

cells. Currently, CAR T-cell formation requires the use of a patient’s own lymphocytes. This 

involves knocking out the TRAC and B2M genes through CRISPR/Cas9 to produce universal CAR 

T-cells made from allogenic cells. Also, CRISPR/Cas9 has been utilized to knock-out the PD-1 

gene in T-cells. This allows CAR T-cells to pass immune checkpoints on solid tumors and 

improves cytotoxicity (Qianqian Gao, et al., 2019). There is an example of this approach being 

used in a phase I clinical trial investigating CD19-specific CAR T-cells with PD-1 knockout 

(NCT03298828). 

 

CONCLUSION 

In conclusion, CAR T-cell therapy has come a long way but still has much potential to keep 

progressing into the cancer therapy of the future. The success seen in hematological 

malignancies has not yet transferred to solid tumors. There are still current efficacy and safety 

issues that present as major hurdles to overcome before CAR T-cell therapy becomes the 



www.manaraa.com

 Parris 11 

mainstream treatment option for solid tumors. There have been many advances in the areas of 

target antigens, controlling off-target toxicity, improving infiltration, and surviving within solid 

tumors. With the problems presented, CRISPR/Cas9 may be the solution to providing cheap, 

safe, and universally available CAR T-cells to those in need. 
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